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Motivations

Motivations

Key of building 1D wavelets by the Littlewood-Paley theory is based
on the ordering of Fourier modes.
Using graph Laplacian eigenvectors as “cosines” or Fourier modes on
graphs with eigenvalues as (the square of) their “frequencies” has been
popular.
Spectral Graph Wavelet Transform (SGWT) of Hammond et al.
derived wavelets on a graph based on the Littlewood-Paley theory that
organized the graph Laplacian eigenvectors corresponding to dyadic
partitions of eigenvalues by viewing the eigenvalues as “frequencies”.
Unfortunately, since the notion of frequency is not well defined on
general graphs, this view is wrong other than for very simple graphs,
e.g., undirected unweighted paths and cycles.
Therefore, we are looking for a natural ordering of graph Laplacian
eigenvectors.
Our goal is to construct graph wavelets based on this ordering.
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Motivations

Facts about Graph Laplacian L(G)

Connected undirected graph G = (V ,E ,W ), with |V | = n.
Graph Laplacian is given by L(G) = D(G)−W (G), in which W (G) is the
weights matrix of G and D(G)i i =∑

j W (G)i j .
L(G) is a real symmetric positive semi-definite matrix, so the
eigenvalues of L (i.e., L(G)) are nonnegative and the eigenvectors
{φl }n−1

l=0 form an orthonormal basis.

Lφl =λlφl , 0 =λ0 <λ1 ≤ ·· · ≤λn−1

λ0 = 0 is always an eigenvalue of L and its corresponding eigenvector
φ0 is a constant vector called the DC component (vector).
The eigenvector φ1 (with the first nonzero eigenvalue) is called the
Fielder vector which plays an important role in graph partitioning.
Also, {φl }n−1

l=0 and {λl }n−1
l=0 commonly viewed as the Fourier modes on

graphs and the corresponding “frequencies”.
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Why view φl as Fourier modes and λl as "frequencies"?
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The eigenvalues of L(G) are λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0 : n−1.

The corresponding eigenvectors are φk (`) = ak;n cos(πk(`+ 1
2 )/n),

k,`= 0 : n −1; ak;n is a const. s.t. ‖φk‖2 = 1.

In this 1D path graph, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k and {φl }n−1

l=0 is the discrete cosine
transform type II basis.

However, the physical interpretation of the “frequency” is not clear for a
general graph, since eigenvectors will not always be cosines.
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Motivations

Problem of SGWT

Construct wavelets in 1D by the Littlewood-Paley theory is to cluster
the Fourier modes into dyadic blocks (low frequency portion and high
frequency portion) based on their corresponding frequencies.

SGWT generalizes this idea to build wavelets on graphs by clustering
the Laplacian eigenvectors {φl }n−1

l=0 into dyadic blocks based on their
corresponding eigenvalues {λl }n−1

l=0 .
For complicated graphs, however, viewing the eigenvalues as (the
square of) frequencies and constructing wavelet relies on the
Littlewood-Paley theory may lead to unexpected problems.

haotianl@math.ucdavis.edu (UC Davis) Natural Graph Wavelet Qual Exam 7 / 35



Motivations

A Counter Example: the 2D Lattice Graph

Let G = (V ,E ,W ) be a 44×20 lattice grid graph, in which |V | = 880,
w(e) = 1 for all e ∈ E .

We claim that, by simply looking at the Laplacian eigenvalue sequence
{λk }k=0,1,..., it is nearly impossible to organize the eigenvectors into
physically meaningful dyadic blocks.
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Motivations

Four Consecutive Eigenvectors of the Lattice Graph

If we order the graph Laplacian eigenvectors by their corresponding
eigenvalues in ascending order, we can see the above four consecutive

eigenvectors have very different oscillation structures.
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Natural ordering: distances between eigenvectors

Plan

Given a connected undirected graph G = (V ,E ,W ), with |V | = n.
A natural way to order and organize the graph Laplacian eigenvectors
is based on their ‘behaviors’ on graphs, i.e. energy distribution and
oscillation patterns.
Also, order them in n-dim space rather than ordering them in 1D (by
eigenvalues).
Define a proper “distance” between the eigenvectors such that similar
behavior ones are close and distinct behavior ones are far apart.

The usual `2-distance doesn’t work since
∥∥∥φi −φ j

∥∥∥
2
=p

2δi j .

Consider some other distances
Compute the dissimilarity between φi and φ j , for all i , j = 0 : n −1,
which results in a “distance” matrix D ∈Rn×n

≥0
Use Multidimensional Scaling (MDS) to embed D into a lower
dimensional Euclidean space, say, Rm , m ¿ n; typically m = 2 or m = 3
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Natural ordering: distances between eigenvectors

Current distances

N. Saito (2018) considers using the ramified optimal transport (ROT)
cost from φ2

i to φ2
j on graphs to measure the difference.

A. Cloninger and S. Steinerberger (2018) propose a way to measure
the ‘similarity’ between φi and φ j , denoted as α(φi ,φ j ), based on the
Hadamard product φi ¯φ j .

I come up with two promising methods to measure the distances.
The difference of absolute gradient (DAG) method
The time-stepping diffusion method (TSDM)
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Natural ordering: distances between eigenvectors The difference of absolute gradient (DAG) method

The difference of absolute gradient (DAG) method

The idea of DAG is that we treat the absolute gradient of each
eigenvector as a feature vector, |dφi | ∈R|E |.
Denote the edge e = (k, l ), k, l ∈V , then |dφi |(e) = |φi (k)−φi (l )|.
Then we use the `2-norm of the feature vectors’ difference to quantify
the distance between eigenvectors.

d(φi ,φ j )2 := 〈|dφi |− |dφ j |, |dφi |− |dφ j |〉E

= 〈dφi ,dφi 〉E +〈dφ j ,dφ j 〉E −2〈|dφi |, |dφ j |〉E

=λi +λ j −
∑

x∈V

∑
y∼x

|φi (x)−φi (y)| · |φ j (x)−φ j (y)|

in which 〈·, ·〉E is the inner product over edges.
Given the eigenvectors, the computational cost is O(|E |).
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MDS Result of 11×5 Lattice Graph: Embedding into R2

Figure: MDS into R2: each small heatmap plot in the embedded space describes
how the eigenvectors looks like on the lattice graph.
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Natural Ordering of the Eigenvectors of Dentritic Tree

3D RGC #100 (unweighted) graph, |V | = 1154:
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Natural ordering: distances between eigenvectors The difference of absolute gradient (DAG) method

A Phase Transition Phenomenon of the Eigenvectors

We have observed that the value 4 is critial since:
The eigenvectors corresponding to the eigenvalues below 4 (left) are
semi-oscillations (like Fourier cosines/sines) over the dendrites.
Those corresponding to the eigenvalues above 4 (right) are much more
localized (like wavelets) around junctions/bifurcation vertices.
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MDS result in R3: ROT vs. DAG

Figure: ROT (left): The light blue point = the DC vector; the light orange = the Fiedler
vector; Viridis points = the eigenvectors which concentrate on the upper left branch; red =
localized eigenvectors. DAG (right): Two dark blue circles = the DC component and Fiedler
vector; the red = localized eigenvectors; the purple = the eigenvectors that concentrated on the
upper left branch. Grey scales represent the index of eigenvectors.
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Optimal Transport Cost a.k.a. Earth Mover Distance (EMD)

EMD is the minimum cost of turning one pile of dirt into the other,
where the cost is the amount of dirt moved times the distance by
which it is moved (i.e., cost = mass × distance).

EMD cannot distinguish these two transport schemes.
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The time-stepping diffusion method (TSDM)

The purpose of TSDM is to design an optimal transport-like method
that depends on time. In other words, at each given time, we have a
cost scheme (or distance method).
In order to measure the optimal transport cost between two vector
measures (with the same total mass) on graphs, we need to first take
the difference between two vector measures as the initial input, then
compute the minimum effort to flat things out on the graph.
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Natural ordering: distances between eigenvectors The time-stepping diffusion method (TSDM)

Motivation of TSDM

Given a time T , let us consider a diffusion process on the graph. We
want to measure the cost of “flatten” the initial graph signal via
diffusion process up to the time T .
We expect the graph signal will be flatten out by this process and the
final cost ,as T →∞, behave similar with the optimal transport cost.
Notations: Denote the graph Laplacian matrix as L whose
factorization is L =ΦΛΦT , in which Φ= [φ0,φ1, · · · ,φn−1] and
Λ= diag([λ0,λ1, · · · ,λn−1]), 0 =λ0 <λ1 ≤ ·· · ≤λn−1. Also, denote the
directed incidence matrix of the graph G as Q̃ ∈R|V |×|E |, which served
as the graph gradient, i.e., Q̃T =∇G .
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TSDM:

(Heat diffusion) Given initial f 0, the governing ODE system which
describes the graph signal u(t )’s (∈Rn) evolution is following:

d

dt
u(t )+L ·u(t ) = 0 u(0) = f 0 ∈Rn (1)

Since {φ0, · · · ,φn−1} forms an ONB of Rn , we have u(t ) =∑n−1
k=0 Ck (t ) ·φk .

Then, after plugging it into the above ODE system and solving for Ck (t ),
we get Ck (t ) = 〈 f 0,φk〉e−λk t . Now, we have the solution:

u(t ) =
n−1∑
k=0

〈 f 0,φk〉e−λk tφk (2)

At a certain time T, let us define the cost of the time-stepping diffusion
method , K ( f 0;T ), as follows:

K ( f 0;T ) :=
∫ T

0
‖∇G u(t )‖1dt ∇G is the graph gradient. (3)
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Convergence of TSDM

Theorem
(Convergence of TSDM) Let G = (V ,E ,W ) be a connected undirected
graph and f 0 as the initial graph signal. K ( f 0;T ) converges as T →∞.

lim
T→∞

K ( f 0;T ) = lim
T→∞

∫ T

0
‖∇G u(t )‖1dt <∞

Furthermore, we can show that for any fixed T > 0 (including T =∞),
K ( · ;T ) is a norm on M = { f ∈ L2(V ) :

∑
x∈V f (x) = 0}.

haotianl@math.ucdavis.edu (UC Davis) Natural Graph Wavelet Qual Exam 24 / 35



Natural ordering: distances between eigenvectors The time-stepping diffusion method (TSDM)

Result Comparison:

Optimal transport cost:

TSDM cost:
time T = 0.1 T = 1 T = 10 T =∞

blue cost 2.79 16.66 38.30 40.32
orange cost 10.41 38.42 63.65 65.87
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The Cost Conjecture

As time T →∞, one might expect the TSDM cost to be close to the
optimal transport cost (i.e., the 1st Wasserstein distance) between any
two vector measures with the same total mass defined on the graph.

The Cost Conjecture
Given any two probability distributions p, q on a connected graph
G = (V ,E ,W ) with graph geodesic distance metric d : V ×V →R≥0,

W1(p, q) ≤ K (p −q ;∞) ≤C ·W1(p, q)

in which W1(p, q) := infγ∈Γ(p,q)
∫

V ×V d(x, y)dγ(x, y), where Γ(p, q) denotes
the collection of all measures on V ×V with marginals p and q in the first
and second factors respectively and C is a constant depends on G.

There is also a manifold version of this conjecture and if the
underlying manifold is [0,1] or T, we can show W1(p, q) ≤ K (p −q ;∞).
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Design Graph Wavelet

Graph Wavelet Frame

Given a graph G = {V ,E ,W } with |V | = n and the distance matrix D of
its eigenvectors, we can get a partition of all the eigenvectors based on
some clustering method, P = {C1,C2, · · · ,CN }, 1 ≤ N ≤ n, in which

∪N
j=1C j = {1,2, · · · ,n} and Ci ∩C j =;, i 6= j .

In the following notation, the subindex j stands for the cluster and the
subindex k represents the localization.

ψk, j =Φ
Filtering︷ ︸︸ ︷

F jΦ
T ek for j = 1,2, · · · , N and k = 1,2, · · · ,n

in which, the diagonal matrix F j ∈Rn×n satisfies F j (l , l ) =χC j (l ) for
l = 1,2, · · · ,n, Φ stores all the graph Laplacian eigenvectors, and ek is
the spike vector at vertex vk .
We can show that {ψk, j }k=1,··· ,n; j=1,··· ,N is a N times redundant
wavelet frame.
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Design Graph Wavelet

Graph Wavelet Basis

One way is to pick n vectors out of nN vectors in the frame {ψk, j } by
using {ek }k∈T j , in which T j ⊂ {1,2, · · · ,n}, instead of all {ek }k=1,··· ,n for
each C j , so that

∑N
j=1 |T j | = n. These n vectors may not be mutually

orthogonal, so we may need some orthogonalization procedure.
Another way is by sparsifying rotation. First, we permute Φ into Φ̂
based on P.

Φ̂= [
φC1 ,φC2 , · · · ,φCN

]
in which C j = { j1, j2, · · · , jl } and φC j = [φ j1 ,φ j2 , · · · ,φ jl ]. Then, we
rotate Φ̂ within each cluster C j for j = 1,2, · · · , N to get an sparse
orthonormal wavelet basis Ψ ∈Rn×n .
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Cat Example by Dr. Cloninger

Ongoing collaboration work on natural graph wavelets and its
applications with N. Saito and A. Cloninger (UCSD).
Consider the graph G to be a triangulated surface of a cat with 3000
3D-points. Use Cloninger and Steinerberger’s method to obtain the
affinity matrix . Apply greedy clustering by iteratively
argmax j 6=1α(φ1,φ j ) to get a cluster of the eigenvectors C1.

Graph wavelets on C1. Red cross indicates the location of ek .
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Future work

Future work

Give a better mathematical explanation why the difference of absolute
gradient method works well on the Cartesian product graphs.
Since the TSDM is a time-involving optimal transport method, it
contains more information than the ROT method about the “behavior”
of graph Laplacian eigenvectors and the geometry information of the
underlying graph. Therefore, we may have better ways to reveal the
geometry of the eigenvectors after considering the time factor.
Try to find an automatic and reasonable way to do the clustering of
the eigenvectors based on the distance matrix D. Also, based on the
results, building different kinds of wavelets on graph (e.g., Shannon
wavelet and Meyer wavelet) or wavelet packet trees on graph. Test
them on different graphs and compare the results with the other graph
wavelets, e.g., SGWT [10].
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Future work

Future work

Working on the cost conjecture, see if there is something to bridge the
optimal transport and the heat diffusion equation when the underlying
graph is more general than a 1D analytic path.
What we have been doing is to design a wavelet basis on graphs, so in
order to test this basis we need to apply them to real data or graphs,
e.g., triangular FEM-like meshes of objects or Facebook data, etc.
Therefore, realizations on computer will also be very important for the
future work.
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Future work

Thanks for your attention!
Any questions?
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