Metrics of graph Laplacian eigenvectors

Haotian Li & Naoki Saito

Department of Mathematics University of California, Davis

SPIE Conference on Wavelets and Sparsity XVIII San Diego, CA August 15, 2019

haotianl@math.ucdavis.edu (UC Davis) Metrics of graph Laplacian eigenvectors

August 15, 2019 1 / 37

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice P₁₁ × P₅
- Dendritic Tree of an RGC of a Mouse

Acknowledgment

- Support from NSF grants: DMS-1418779 and DMS-1912747
- Support from Julia community who helped our computational and graphical issues

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Motivations: Problematic Ordering

- Key of building 1D wavelets by the Littlewood-Paley theory is based on *the ordering of Fourier modes*.
- Using *graph Laplacian eigenvectors* as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been popular.
- Spectral Graph Wavelet Transform (SGWT) of Hammond et al. derived wavelets on a graph based on the Littlewood-Paley theory that organized the graph Laplacian eigenvectors corresponding to dyadic partitions of eigenvalues by viewing the eigenvalues as "frequencies".
- This view may face difficulty for graphs more complicated than very simple undirected unweighted paths and cycles.

Motivations: Natural Ordering

- Therefore, we design "metrics" of graph Laplacian eigenvectors to detect the "behavioral differences" between them so that we can order the eigenvectors more naturally than using the size of the corresponding eigenvalues.
- Goal: Define proper "metrics" between the eigenvectors such that similar behavior ones are close and distinct behavior ones are far apart.
- The usual ℓ^2 -distance doesn't work since $\left\| \boldsymbol{\phi}_i \boldsymbol{\phi}_j \right\|_2 = \sqrt{2} \delta_{ij}$.
- Furthermore, these metrics *help us design smooth multiscale basis dictionaries* that are quite important for many applications, e.g., efficiently approximating graph signals and solving differential equations on graphs.

Motivations

- A Brief Review of Existed Metrics
- 4 Our Proposed Metrics
 - Time-Stepping Diffusion (TSD) Metric
 - Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Facts about Graph Laplacian L(G)

- Connected undirected graph G = (V, E, W), with |V| = n and |E| = m.
- Graph Laplacian is given by L(G) = D(G) W(G), in which W(G) is the weights matrix of G and $D(G)_{ii} = \sum_{j} W(G)_{ij}$.
- L(G) is a real symmetric positive semi-definite matrix, so the eigenvalues of L (i.e., L(G)) are nonnegative and the eigenvectors {φ_l}ⁿ⁻¹_{l=0} form an orthonormal basis.

$$L\boldsymbol{\phi}_l = \lambda_l \boldsymbol{\phi}_l, \qquad 0 = \lambda_0 < \lambda_1 \leq \cdots \leq \lambda_{n-1}$$

- $\lambda_0 = 0$ is always an eigenvalue of *L* and its corresponding eigenvector ϕ_0 is a constant vector called *the DC component* (vector).
- The eigenvector ϕ_1 (with the first nonzero eigenvalue) is called *the Fielder vector* which plays an important role in graph partitioning.
- Also, $\{\phi_l\}_{l=0}^{n-1}$ and $\{\lambda_l\}_{l=0}^{n-1}$ commonly viewed as the Fourier modes on graphs and the corresponding "frequencies".

Motivations

3 A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Review: Ramified Optimal Transportation (ROT) Metric

- First, by taking elementwise square, we convert each eigenvector to a probability mass function (pmf) ϕ_i^2 on the input *undirected* graph G = (V, E, W) with |V| = n and |E| = m.
- Define the ROT metric between a pair of the eigenvectors by the minimal cost to move the probability mass from one pmf ϕ_i^2 to the other pmf ϕ_i^2 .
- To do so, we first orient the edges in E(G) in an arbitrary manner to form a directed graph G̃ and compute its incidence matrix
 Q := [q₁|q₂|···|q_m] ∈ ℝ^{n×m}. Here, q_k represents the endpoints of e_k : if e_k connect from vertex i to vertex j, then

$$q_k[l] = \begin{cases} -1 & \text{if } l = i; \\ 1 & \text{if } l = j; \\ 0 & \text{otherwise.} \end{cases}$$

Review: ROT Metric Proposed by Saito (2018)

- For undirected graph G, we form *bidirected* graph $\tilde{\tilde{G}}$ with $\tilde{Q} = [Q| Q]$.
- Given \tilde{Q} , we solve the *balance equation* (underdetermined),

$$\tilde{Q}\boldsymbol{w} = \boldsymbol{\phi}_j^2 - \boldsymbol{\phi}_i^2, \qquad \boldsymbol{w} \in \mathbb{R}^{2m}_{\geq 0},$$
(1)

- Note that any \boldsymbol{w} satisfying Eq. (1) represents a transportation path (or plan) from $\boldsymbol{\phi}_i^2$ to $\boldsymbol{\phi}_j^2$, and there may be multiple solutions.
- Define the cost of a transport path $P \in \text{Path}(\phi_i^2, \phi_j^2)$ as:

$$\boldsymbol{M}_{\alpha}(\boldsymbol{P}) := \sum_{\boldsymbol{e} \in E(\boldsymbol{P})} w(\boldsymbol{e})^{\alpha} \operatorname{length}(\boldsymbol{e}), \quad \alpha \in [0,1].$$

• Then, define *ROT metric* between ϕ_i and ϕ_j as:

$$d_{\text{ROT}}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2; \alpha) := \min_{P \in \text{Path}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2)} \boldsymbol{M}_{\alpha}(P).$$

• For $\alpha = 1$, $\min_P M_1(P)$ becomes the optimal transport cost.

Review: Hadamard (HAD) Product Affinity Measure Proposed by Cloninger and Steinerberger (2018)

• On a compact Riemannian manifold (*M*, *g*), the *HAD affinity measure* between eigenfunctions is defined as:

$$\begin{aligned} a_{\text{HAD}}(\phi_{i},\phi_{j})^{2} &:= \|\phi_{i}\phi_{j}\|_{2}^{-2} \int_{\mathcal{M}} \left(\int_{\mathcal{M}} p(t,x,y)(\phi_{i}(y) - \phi_{i}(x))(\phi_{j}(y) - \phi_{j}(x))dy \right)^{2} dx \\ &= \frac{\|e^{t\Delta}(\phi_{i}\phi_{j})\|_{L^{2}}^{2}}{\|\phi_{i}\phi_{j}\|_{L^{2}}^{2}} \end{aligned}$$

where $(\lambda_i, \phi_i)_i$ is an eigenpair of the Laplace-Beltrami operator Δ on \mathcal{M} , p(t, x, y) is the classical heat kernel, and the value of t should satisfy $e^{-t\lambda_i} + e^{-t\lambda_j} = 1$.

• It can be interpreted as *a global average of local correlation* between these two eigenfunctions.

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Motivations

2 Basics of Graph Theory: Graph Laplacians

3 A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

5 Numerical Experiments

Time-Stepping Diffusion (TSD) Metric

- The purpose of TSD metric is to design an optimal transport-like metric that *depends on time*. In other words, at each given time, we have a cost scheme (or metric).
- Given a time *T*, we consider the heat diffusion process on the graph. We want to measure *the cost of "flatten" the initial graph signal via diffusion process up to the time T*.
- We expect the graph signal will be flatten out by this process and the final cost , as $T \to \infty$, behave similar with the $d_{\text{ROT}}(\alpha = 1)$.
- Notations: Denote the factorization of graph Laplacian matrix as
 L = ΦΛΦ^T, in which Φ = [φ₀|φ₁|···|φ_{n-1}] and
 Λ = diag([λ₀, λ₁,···, λ_{n-1}]); the incidence matrix as Q∈ ℝ^{n×m}, which is
 treated as the graph gradient, i.e., Q^T = ∇_G.

TSD Cost Functional K:

(Heat diffusion) Given initial f_0 , the governing ODE system which describes the graph signal u(t)'s ($\in \mathbb{R}^n$) evolution is following:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{u}(t) + L \cdot \boldsymbol{u}(t) = \boldsymbol{0} \quad t \ge 0, \qquad \boldsymbol{u}(0) = \boldsymbol{f}_0 \in \mathbb{R}^n$$

Since $\{ \phi_0, \cdots, \phi_{n-1} \}$ forms an ONB of \mathbb{R}^n , we can get the general solution:

$$\boldsymbol{u}(t) = \sum_{k=0}^{n-1} \langle \boldsymbol{f}_0, \boldsymbol{\phi}_k \rangle e^{-\lambda_k t} \boldsymbol{\phi}_k$$

At a certain time T, we define the following *TSD cost functional*:

$$K(\boldsymbol{f}_0,T) := \int_0^T \|\nabla_G \boldsymbol{u}(t)\|_1 \mathrm{d}t \qquad \nabla_G \text{ is the graph gradient.}$$

which can be interpreted as *accumulated total variation* of u(t).

Convergence of TSD Cost and TSD Metirc

- We can show that $\lim_{T\to\infty} K(f_0,T) < \infty$ for any $f_0 \in \mathbb{R}^n$.
- After setting the input signal f₀ = φ_i φ_j, we define the TSD metric between the eigenvectors at time T by

$$d_{\text{TSD}}(\boldsymbol{\phi}_i, \boldsymbol{\phi}_j; T) := K(\boldsymbol{f}_0, T)$$

- Furthermore, we can show that for any T > 0 (including $T = \infty$), $K(\cdot, T)$ is a norm on $\mathscr{L}_0^2(V) := \{ f \in \mathscr{L}^2(V) | \sum_{x \in V} f(x) = 0 \}.$
- Cost Conjecture: As $T \rightarrow \infty$, we expect

 $d_{\text{ROT}}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2; \alpha = 1) \le d_{\text{TSD}}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2; T = \infty) \le C(G) \cdot d_{\text{ROT}}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2; \alpha = 1)$

where C(G) is a constant depending on the graph G.

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics

Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

5 Numerical Experiments

Difference of Absolute Gradient (DAG) Pseudometric

- The idea of DAG is that we use the absolute gradient of each eigenvector as its feature vector describing its behavior.
- We define *DAG pseudometric* as:

 $d_{\text{DAG}}(\boldsymbol{\phi}_i, \boldsymbol{\phi}_j) := \| |\nabla_G |\boldsymbol{\phi}_i - |\nabla_G |\boldsymbol{\phi}_j\|_2 = \| \text{abs.}(Q^{\mathsf{T}} \boldsymbol{\phi}_i) - \text{abs.}(Q^{\mathsf{T}} \boldsymbol{\phi}_j) \|_2$

• Further, we derive the following equations:

$$\begin{aligned} d_{\text{DAG}}(\boldsymbol{\phi}_{i},\boldsymbol{\phi}_{j})^{2} &= \langle |\nabla_{G}|\boldsymbol{\phi}_{i} - |\nabla_{G}|\boldsymbol{\phi}_{j}, |\nabla_{G}|\boldsymbol{\phi}_{i} - |\nabla_{G}|\boldsymbol{\phi}_{j}\rangle_{E} \\ &= \langle |\nabla_{G}|\boldsymbol{\phi}_{i}, |\nabla_{G}|\boldsymbol{\phi}_{i}\rangle_{E} + \langle |\nabla_{G}|\boldsymbol{\phi}_{j}, |\nabla_{G}|\boldsymbol{\phi}_{j}\rangle_{E} - 2\langle |\nabla_{G}|\boldsymbol{\phi}_{i}, |\nabla_{G}|\boldsymbol{\phi}_{j}\rangle_{E} \\ &= \lambda_{i} + \lambda_{j} - \sum_{x \in V} \sum_{y \sim x} |\boldsymbol{\phi}_{i}(x) - \boldsymbol{\phi}_{i}(y)| \cdot |\boldsymbol{\phi}_{j}(x) - \boldsymbol{\phi}_{j}(y)| \end{aligned}$$

in which $\langle \cdot, \cdot \rangle_E$ is the inner product over edges.

- The last term of the formula can be viewed as *a global average of absolute local correlation* between eigenvectors, which is close to the interpretation of HAD affinity measure.
- Given the eigenvectors, the computational cost is O(|E|).

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics
- 4 Our Proposed Metrics
 - Time-Stepping Diffusion (TSD) Metric
 - Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Numerical Experiments

- To evaluate the performance of those "metrics" for a given graph, we assemble the *distance matrix* by the mutual behavioral difference between the eigenvectors (or corresponding pmfs, e.g., ϕ_i^2 for d_{ROT}) using each "metric".
- Then use the *classical MDS (Multidimensional Scaling)* on the distance matrix and embed the eigenvectors into the low dimensional Euclidean space, i.e., \mathbb{R}^2 or \mathbb{R}^3 .
- By doing so, we can get the *visual arrangement* of eigenvectors organized by the corresponding "metric".

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics
- 4 Our Proposed Metrics
- Numerical Experiments
 2D Lattice P₁₁ × P₅
 Dendritic Tree of an RGC of a Mouse

2D Lattice $P_{11} \times P_5$: d_{ROT} and a_{HAD}

Figure: 2D-MDS embedding of the eigenvectors of 11×5 unweighted lattice graph based on the ROT and the HAD metrics: each small heatmap plot describes how the eigenvector looks like on the lattice graph.

- They both reveal the *two-dimensional ordering* of the eigenvectors.
- a_{HAD} is better but still has a little misordering in y (vertical) direction.

2D Lattice $P_{11} \times P_5$: d_{TSD} with different T

haotianl@math.ucdavis.edu (UC Davis) Metrics of graph Laplacian eigenvectors August 15, 2019 24 / 37

2D Lattice $P_{11} \times P_5$: d_{DAG}

- *d*_{DAG} nicely detect two directions of the oscillations. The eigenvectors are organized in *2D array*.
- For each column of the array, the eigenvectors have the same oscillation pattern in *y* direction and oscillation in *x* direction increases linearly. Vice versa.

haotianl@math.ucdavis.edu (UC Davis) Metrics of graph Laplacian eigenvectors

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics
- 4 Our Proposed Metrics
- 5 Numerical Experiments
 - 2D Lattice $P_{11} \times P_5$
 - Dendritic Tree of an RGC of a Mouse

RGC#100: Two Types of Eigenvectors

- (a): The 3D dendritic tree of RGC#100 graph.
- (b): The representative of eigenvectors with semi-global oscillations on the upper-left branch (projected in ℝ²).
- (c): The representative of eigenvectors with much more *localized* active support around junctions/bifurcation vertices (projected in ℝ²).
- The eigenvalues of two types eigenvectors can be very close at 4.0.

RGC#100: $d_{\rm ROT}$ with $\alpha = 0.5$

Figure: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on $d_{\text{ROT}}(\phi_i^2, \phi_j^2; \alpha = 0.5)$: The large blue circle = the DC component and the big orange circle = the Fiedler vector; the small red circles = localized eigenvectors; the medium viridis circles = the semi-global oscillation eigenvectors. Grey scales represent the magnitude of the eigenvalues.

RGC#100: *a*_{HAD}

- *a*_{HAD} successfully separates the two types of eigenvectors, but everything is *too closely located*.
- The reason is that the Hadamard product will almost vanish on graphs, i.e., $\phi_i \circ \phi_j \approx \mathbf{0} \in \mathbb{R}^n$, if the active support of the concentrated part of ϕ_i and ϕ_j do not overlap.

RGC#100: d_{TSD} with T = 0.1

Figure: 3D-MDS embedding of the Laplacian eigenvectors of unweighted RGC #100 graph based on $d_{\text{TSD}}(\phi_i, \phi_j; T = 0.1)$.

RGC#100: *d*_{DAG}

- The 3D-MDS result of $d_{\text{TSD}}(\phi_i, \phi_j; T = 0.1)$ and $d_{\text{DAG}}(\phi_i, \phi_j)$ have similar structures.
- They also *successfully split* the two types of eigenvectors.
- But the DC vector and the Fiedler vector are *too close to distinguish* from each other in the two results.

haotianl@math.ucdavis.edu (UC Davis) Metrics of graph Laplacian eigenvectors

Motivations

- 2 Basics of Graph Theory: Graph Laplacians
- 3 A Brief Review of Existed Metrics

4 Our Proposed Metrics

- Time-Stepping Diffusion (TSD) Metric
- Difference of Absolute Gradient (DAG) Pseudometric

Numerical Experiments

- 2D Lattice $P_{11} \times P_5$
- Dendritic Tree of an RGC of a Mouse

Discussion

- In general, we are interested in two types of eigenvector behavior patterns on graphs: *global and directional oscillation pattern* and *energy concentration pattern*.
- Global and directional oscillation pattern represents *how the eigenvector globally oscillate on the graphs*, e.g., the DCT type II eigenvectors on 1D path graphs where the oscillation pattern is completely characterized by the eigenvalues; the eigenvectors of 2D lattice graphs or more general Cartesian product graphs where the oscillation patterns can be characterized by different directions.
- The energy concentration pattern of the eigenvector describes *which part of the graphs that the eigenvector is more active*, e.g., the tree graphs where eigenvectors may concentrated on the junctions or may have semi-global oscillation structure on certain branches.

Discussion

- Empirically, the DAG pseudometric and the HAD affinity measure reveal the directional oscillation patterns of the eigenvectors quite well.
- The ROT metric works well on energy concentration detection.
- The TSD time-dependent metric behaves similar to DAG with small T and similar to ROT with large T.
- However, the huge computational cost of TSD with large *T* limit its performance on complicated graphs.
- In the future, we will work on designing better *auto-adaptive* and *cost efficient* "metrics" which expected to be *good for both types* of eigenvector behaviors on different graphs.

Simplified ROT (sROT) Metric

- If the underlying graph G is a *tree* (connected graph without loop), we can develop a computational efficient simplified ROT (sROT) metric.
- Notice that there are only two types of vertices in a tree: branch vertices (degree less than 2) and junction vertices (degree greater than 2).
- Therefore, one can simplified the tree graph by treating the branch nodes on the same branch as one vertex and get a simplified graph G_s.
- Correspondingly, instead of converting the eigenvectors φ_i into pmfs φ_i² on G, we can convert them into *low-dimensional* pmfs θ_i on G_s by integrating the values of φ_i² over each branch of the tree.
- Define *sROT metric* as:

$$d_{\text{sROT}}(\boldsymbol{\phi}_i^2, \boldsymbol{\phi}_j^2; \alpha) := d_{\text{ROT}}(\theta_i, \theta_j; \alpha)$$

References

- N. Saito, "How can we naturally order and organize graph Laplacian eigenvectors?" in Proc. 2018 IEEE Workshop on Statistical Signal Processing. (2018, pp. 483-487).
- A. Cloninger and S. Steinerberger, "On the Dual Geometry of Laplacian Eigenfunctions." Exp. Math., (2018), pp. 1-11.
- Q. Xia, *"Motivations, ideas and applications of ramified optimal transportation,"* ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49, no. 6, pp. 1791-1832, **2015**, Special Issue Optimal Transport.
- D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emergingfield of signal processing on graphs", IEEE Signal Processing Magazine, 30 (2013), pp. 83-98.
- Y. Nakatsukasa, N. Saito, and E. Woei, *"Mysteries around the graph Laplacian eigenvalue 4,"* Linear Algebra Appl., 438, (**2013**), pp. 3231-3246.
- D. K. Hammond, P. Vandergheynst, and R. Gribonval. "Wavelets on graphs via spectral graph theory." Appl. Comput. Harm. Anal., 30, (2011), pp. 129-150.
- I. Borg and P. Groenen, "Modern Multidimensional Scaling: Theory and Applications", Springer, New York, 2nd edition, 2005.

Thanks for your attention! Any questions?